Computer Graphics

Comunicacion Visual. Tecnun

Nicolas Serrano — 2019. Tecnun

Introduction

Agenda

* Introduction to Computer Graphics
* History

* CGin films

* Applications

* Contents of the course

What are Computer Graphics?

 Edition of models and figures
* Create, store, modify and render

* The final output on the screen are pixels

Elements of Computer Graphics

 Hardware
 CPU, video card, display, ...

e Software
* modeler, capturer, renderer, ...

* People
* programmer, designer, animator, ...

* Products
* applications, films, images, models, ...

Short history of Computer Graphics

* 1940: first project of a . —_
Computer Graphics system &aE B ("

+ 1951: Whirlwind: = A
representation of data of a T
radar

e 1961: Spacewar, first video
game

Sketchpad

* lvan Sutherland (doctoral thesis in MIT, 1963)

* First interactive graphic system
* Display of primitives
e Hierarchic models
* Constraints based
* Optic pen
* Function keys
* Popup menus

Evolution of hardware

* Vectorial displays
* based on oscilloscopes

e 1975: Cathode Ray Tube (CRT)

* Time independent of number of elements
e introduction of frame buffer

* 1980: low cost hardware -> spreading of graphic applications

Rendering

* 1971 — Gouraud surface rendering
e 1974 - Z-Buffer algorithm, Catmull
* 1975 — Phong surface rendering

e 1975 — Fractal geometry of Mandelbrot

Rendering

e 1976 - Textures, James Blinn, Catmull
1978 — Curve surfaces, James Blinn
* 1980 - Ray tracing, Turner Whitted
e 1984 - Radiosity, Cornell University

Rendering

e 1985 — Solid textures, Perlin
* 1988 - Renderman, Pixar

e 1995 — first feature film:
Toy Story

Computer Graphcis in films

SPECIAL WIDESCREEN EDITION

* 198

' Y ¥ AE
e A

BOY, HAVE WE GOT A VACATION FOR YOU.-

1973 Star Trek Il - 1983

Star Wars

PETER L LSHMNG
ALEC GLBNRESS

secucron STAROWARS

5 TECE

i gl A By Bepedes D i
GEOAGE LDCAS Galty KNTE AO0R WILLLAMWS

smere AT HAMILL HARISON FORD CANRE FEHER,

SR P ST

@)

1977

1980

Feature films made with computer

graphics

Toy Story

Bugs (Bichos)
Hormigaz (Antz)
Monsters Inc.
Shrek

Toy Story 2
Dinosaurs

ce Age, Barbie, ...

Finding Nemo

Pixar

B 2 RN (T O W S SR

T m— - | P I |

| e [P —_lﬂ.l “_- B

T T | N N . :
e (E 9 Tgy _ o

"R)]

&

P 20085

& THE INCREDIBLES _-I
B H AE

- =T | _-L__.__-_I
R S e L
I | (S [o IS
B IR 0 IR B b [N R

I RE ELSER CRSIRNY
'IJ RRRELEAE AR |
Wil Robert P Al i Jack Martin

! t m"lh D-N'ro Inll::;or nq;ﬂu Black Scorsese
¥ %r
. .

e ' Dig
mmm‘:uhmpﬁl ;

5‘?5— ==

Every ant
has
his day.

2-DISc SPECIAL EDITION

MIGLU'I“ dlLL-lfl‘l‘ AN
SCRAT S MISSING

EASH A NEW REALITY

WO BIG THUMBS UP|

NOVEMBER 2004 ' e 35 3 i =
s EU'I"F!C"H BO\" GEHIUS IS
VER & FUNNY.. \

Simulation of “reality”

* Stars Wars, Episode 1
* Jurassic Park
* Final Fantasy

ST P Tarieey PP

Pl Capture of real movement

Special effects

The Adventures of Rocky & Bullwinkle, The Beach, Cast Away, Chicken Run, Dinosaur, Gladiator, Hollow Man, How the Grinch
Stole Christmas, Mission to Mars, The Perfect Storm, Pitch Black, Nutty Professor II: The Klumps, Space Cowboys, Bicentennial
Man, Fight Club, Inspector Gadget, Iron Giant, The Matrix, Sleepy Hollow, Star Wars: The Phantom Menace, Stuart Little, Toy Story
2, The World is Not Enough, Babe: Pig in the City, A Bug’s Life, Patch Adams, What Dreams May Come, Contact, Jurassic Park: The
Lost World, Men in Black, Starship Troopers, Apollo 13, Balto, Batman Forever, Casper, Indian in the Cupboard, Jumanji, Outbreak,
Pocahontas, Species, Toy Story, Clear & Present Danger, Forrest Gump, Interview with a Vampire, The Jungle Book, The Lion King,
The Mask, Miracle on 34th Street, Speed, True Lies, Cliffhanger, Demolition Man, Free Willy, Jurassic Park, Aladdin, Batman,
Returns, Death Becomes Her, Beauty and the Beast, Star Trek VI, Terminator Il, Jetsons, The Abyss, StarQuest, Young Sherlock
Holmes, Artificia Intelligence, Evolution, Minority Report, Mission: Impossible 2,Forces, ...

Games

SCORE<1» HI-SCORE SCORE<2>
“1: 1515 - X=2-1x

° 1972 Pong i anmmanasnes

dh dxh A e ixh A Ak dxh A A i

e 1978 Space Invaders

* 1980 Pacman

* 1985 Commodore Amiga
* 1988 Tetris

* 1989 Game boy

http://jamillan.com/primavera/crono.htm

Applications in different areas

e User interface

 CAD

* Medicine

* Scientific Visualization
e Simulation

* Leisure time
* films, video games, ...

Contents of the course

Graphic libraries

* They are libraries with functions to render graphics

* Examples
* OpenGL
* Java3D
* Phigs
* DirectX

* Lenguages
* WRML.

Transformations

* Coordinate systems

* 2D Transformations

* 3D Transformations

* Transformation composition
* Rotating about a pivot

* Rotating about an axis.

Model of 3D objects

* Objects building
* Rendering of objects

* Polygonal representation
e structure, creation, mesh, attributes, ...

* Others methods (splines, CGS, volumetric).

Camera

* Coordinate systems and transformations
* Viewing coordinates

* Coordinate transformation matrix

* Projections

* Window and viewport.

Lighting

* Factors of light

* Reflection
 Ambient light

* Diffuse reflection
* Specular reflection
* [llumination models.

Color

* Light and color
* The visible light spectrum
* Primary and secondary colors

* Color spaces
* RGB, CMY, YIQ, HLS, CIE
* CIE XYZ, CIE xyY and CIE diagram properties.

Surface rendering methods

 Different surface rendering methods
* Wireframe

* Plane color

* Gouraud

* Phong

* Gouraud-Phong comparison.

Rendering algorithms

* Objective

* Rendering of lines
* DDA algorithm
* Bresenham algorithm

* Polygons rendering
* Polygons filling
* Visible surface detection.

Textures

* Concept of texture

* Use
* Texture mapping
* Environment mapping
* Bump mapping.

Illumination models.

e Local illumination model and
global illumination model

* The rendering equation of Kajiya

* Algorithms
* Ray tracing
e Radiosity
e Radiance application.

Interaction

* The human senses
* [nteraction systems
* Virtual reality

 Augmented reality.

Animation

* Capture and images sequences
e “Sprites” animation

* Key Frame animation

* 3D animation

* Examples:
e Flash, Quicktime VR, VRML.

Sound

* Sound digitalization
* Sound process

* Compression

* Formats

e MIDI.

Multimedia graphics and Video

* Types of graphics, multimedia graphics, bitmaps, resolution,
compression

* Video systems

* Digitalization of video, video standards, compression of video
* Streamed video

 Edition of digital video and process

Graphic Hardware

* Description of the elements
e Graphic cards

* Benchmarking

* Projection technologies.

Graphic Libraries
Introduction to OpenGL

CrentL

Introduction

* Graphic System:
 Model + Visualization

* Visualization:
* Use of specific hardware (3D)
* Implemented through libraries

Definition of graphic library

* Software that generates images based on
mathematical models and patterns of lighting,
textures, etc.

I

/4 1N

Libraries, files, syntax

* Point of origin
* |GL-Plot 10 (Tektronix)

e Starbase (Hewlett Packard)
 Iris GL Library (SGI)

* Distinguish from other graphic systems

 VRML, X3D (Language of description)
* DirectX-Direct3D

 Java 3D

* Open Inventor

* Performer, Fahrenheit

* Graphic engines

Objective of graphic libraries

* Independence of hardware (input devices as well as output devices).

* Independence of the application (the library is accessed through a
unique interface (for each programming language) for any
application.

Types of graphic libraries

* Direct Rendering and gfx packages:
* OpenGl, Direct3D, GKS, PHIGS, PEX, GKS, etc...

* Scene-graph based
* OpenGL Performer, Open Inventor, OpenGL Optimizer, PHIGS+, etc...

e Toolkits
* World Toolkit, AVANGO, Game Engines, etc...

e Gestion imagenes 3D
* “Bajo nivel”
* Tareas
e Gestion “en serie” de los elementos de |la escena
* Elementos de la escena
* Primitivas graficas
e “Atributos” (# edition imagenes)
* Variables de estado
& Generation imagen
* Sistemas
* OpenGL
* Direct 3D
 Java 3D

e “Alto nivel” ...

* (... Gestion imagenes 3D)

e “Alto nivel”

* Tareas

* Gestion global de los elementos de |a escena

* Arbol escena

* Carga/descarga de memoria

* Gestion elementos no visibles

e Election del modelo geométrico: Nivel detalle, Textura

* Election de la técnica de presentation (rendering)
* Sistemas

* |nventor

* Performer

e (Fahrenheit)

* Hewlett Packard

DirectX Componentes

* DirectDraw
* DirectSound
* DirectPlay

* Direct3D

- Introduction

e What is DirectX?

e Set of APIs that allows developers of interactive content (image, video, sound
...) to have access to features of specialized hardware without writing a
specific code for that hardware in MS Windows Systemes.

- Introduction

 Components included in DirectX

* |t allows to develop applications of high performance and real time
 API
 API
 API
 API
 API

- Introduction

* Objectives of DirectX

* Develop Windows applications of high performance
using
e Graphic cards
* Plug'n Play
 Communication services built in Windows
e Resources of the system

* Use of the new implemented hardware

- Introduction
* DirectX & COM (Component Object Model)

: black box that represents the hardware and requires
communication with other applications through an interface.

: commands sent and received of the object through
the COM interface

* Ex.: Method is sent through the
interface to get the current value of
the resolution of the screen with the object

- DirectDraw

* It is in charge of managing the video memory

* Provide tools for:
* Manipulation of multiple video buffers
* Direct access to video memory
* Page flipping
e Back Buffering
* Use of the graphic palette

* Clipping

- DirectDraw

* Types of objects
* IDirectDraw
« IDirectDrawSurface
« IDirectDrawPalette
* IDirectDrawClipper
« IDirectDrawVideoPort

- DirectDraw

* Graphic and Technical concepts:
* Bitmaps
e Surfaces of drawing (buffers)
* Page Flipping and Back Buffering
e Rectangles
* Sprites
* Video modes
e Buffers
* Overlays
* Clippers
* Video Ports

- DirectSound

 Components of Audio of DirectX:
* Mix of audio channels
 Hardware acceleration
* Direct access to sound devices
e Audio capture

- DirectSound

e COM Interfaces
» IDirectSoundBuffer
» IDirectSound3DBuffer
« IDirectSound3DListener
» IDirectSoundCapture
» IDirectSoundCaptureBuffer

- DirectPlay

e Simplify the access of the applications to the
communication services

* Grant independence for the creation of game
servers

e Communications
* Peer-to-Peer
e Client/Server

- Direct3D

* Graphic interface for 3D hardware

* |t allows interactive tridimensional graphics in Windows
applications.

e 2 Modes:

* Immediate

* Low level 3D API 3D

* Independence of device

* Experimented programmers
* Retained

* Fast developments
e High layer of immediate mode

- Direct3D

* Basic concepts

* 3D coordinate systems
e Left-handed
* We can simulate right-handed
* Transformations 3-D
* Translation
* Rotation
* Scale up / scale down
* Polygons
 Normal to the face and vertex
e Shading modes
* Triangles interpolation
* Triangles

* Rules to render triangles

- Direct3D

* Conceptos Basicos
* Triangles
* Rules to render triangles

OpenGL

* Introduced in 1992 by SGI
e Based in IRIS GL, an API for SGI workstations

* It is an open standard that has been widely adopted for all kind of
graphic applications

* It is developed under the supervision of the OpenGL architecture
review board

Design objectives of OpenGL:

* Graphic API of high performance (with hardware acceleration)
* It has some independence of the hardware
* It is a natural APl in C with possibilities of extensibility

It has become a standard because ...

* It doesn’t try to do many things:
* Only render the image, doesn’t manage windows, etc...
* |t doesn’t have high level animation, model, sound, etc...

* It does what is needed:
* Useful render effects and high performance

* It was promoted by leader companies such as SGI, Microsoft, etc

Advantages of OpenGL (1)

* Industry standard
An independent consortium, the OpenGL Architecture Review Board, guides
the OpenGL specification. With broad industry support, OpenGL is the only
truly open, vendor-neutral, multiplatform graphics standard.

e Stable
OpenGL implementations have been available for more than seven years on
a wide variety of platforms. Additions to the specification are well controlled,
and proposed updates are announced in time for developers to adopt
changes. Backward compatibility requirements ensure that existing
applications do not become obsolete.

* Reliable and portable
All OpenGL applications produce consistent visual display results on any
OpenGL APl-compliant hardware, regardless of operating system or
windowing system.

Advantages of OpenGL (2)

* Evolving
Because of its thorough and forward-looking design, OpenGL allows new
hardware innovations to be accessible through the API via the OpenGL
extension mechanism. In this way, innovations appear in the APl in a timely
fashion, letting application developers and hardware vendors incorporate
new features into their normal product release cycles.

e Scalable
OpenGL API-based applications can run on systems ranging from consumer
electronics to PCs, workstations, and supercomputers. As a result,
applications can scale to any class of machine that the developer chooses to

target.

Advantages of OpenGL (3)

* Easy to use
OpenGL is well structured with an intuitive design and logical commands.
Efficient OpenGL routines typically result in applications with fewer lines of
code than those that make up programs generated using other graphics
libraries or packages. In addition, OpenGL drivers encapsulate information
about the underlying hardware, freeing the application developer from
having to design for specific hardware features.

 Well-documented
Numerous books have been published about OpenGL, and a great deal of
sample code is readily available, making information about OpenGL
inexpensive and easy to obtain.

Render of OpenGL

* Geometric primitives:
* Points, lines and polygons

* Images primitives:
* Images and bitmaps

e Differentiated pipelines for images and geometry, joined by the
texture mapping

* The render depends on the state (lights, colors, materials, etc)

OpenGL Architecture

IMAGING PATH

—I-[Preed Qperations

—I-l Imaga Rasterization |

—

GEDOMETRY PATH

Tasmre Hn'n-nl r-l Operatie H TO FRAME BUFFER *i}

‘ w—‘—\- Unpack Vertices |

—b[Wertex Operations

—n-[r—————— _|

OpenGL features (1)

* Accumulation buffer A buffer in which multiple rendered frames can be composited to produce a
single blended image. Used for effects such as depth of field, motion blur, and full-scene anti-
aliasing.

* Alpha blending. Provides a means to create transparent objects.
* Automatic rescaling of vertex normals changed by the modeling matrix.

 BGRA pixel formats and packed pixel formats to directly support more external file and hardware
frame buffer types.

* Color-index mode. Color buffers store color indices rather than red, green, blue, and alpha color
components.

* Immediate mode. Execution of OpenGL commands when they're called, rather than from a
display list.

* Display list. A named list of OpenGL commands. The contents of a display list may be
preprocessed and might therefore execute more efficiently than the same set of OpenGL
commands executed in immediate mode.

OpenGL features (2)

* Double buffering. Used to provide smooth animation of objects. Each
successive scene of an object in motion can be constructed in the back
or "hidden" buffer and then displayed. This allows only complete images
to ever be displayed on the screen.

* Feedback. A mode where OpenGL will return the processed geometric
information (colors, pixel positions, and so on) to the application as
compared to rendering them into the frame buffer.

* Level of detail control for mipmap textures to allow loading only a
subset of levels.

* Materials lighting and shading. The ability to accurately compute the
color of any point given the material properties for the surface.

* Pixel operations. Storing, transforming, mapping, zooming.

* Polynomial evaluators. To support non-uniform rational B-splines
(NURBS).

* Primitives. A point, line, polygon, bitmap, or image.
e Raster primitives. Bitmaps and pixel rectangles.

OpenGL features (3)

* RGBA mode. Color buffers store red, green, blue, and alpha color
components, rather than indices.

* Selection and picking. A mode in which OpenGL determines whether
certain user-identified graphics primitives are rendered into a region of
interest in the frame buffer.

* Specular Highlights. Application of specular highlights after texturing for
more realistic lighting effects.

* Stencil planes. A buffer used to mask individual pixels in the color frame
buffer.

* Texture coordinate edge clamping to avoid blending border and image
texels during texturing.

OpenGL features (4)

* Texture mapping. The process of applying an image to a graphics
primitive. This technique is used to generate realism in images.

* Three Dimensional Texturing. Three-dimensional texturing for
supporting hardware-accelerated volume rendering.

* Transformation. The ability to change the rotation, size, and perspective
of an object in 3D coordinate space.

* Vertex array enhancements to specify a subrange of the array and draw
geometry from that subrange in one operation.

e Z-buffering. The Z-buffer is used to keep track of whether one part of an
object is closer to the viewer than another.

Related APIs

* GLX, WGL, AGX

* Connection of OpenGL with the window environment

* GLU (OpenGL Utility library)
* |tis part of the OpenGL
* |tincludes support for quadratic, NURBS, etc.

 GLUT (OpenGL Utility Toolkit)

* |t is not a official part of the OpenGL
* |t allows the portability of the applications on different window systems

* MESA: an OpenGL clone

OpenGL APIs

e Library of functions to generate images from 3D models, plus other
auxiliary libraries
e g|: the OpenGL library that interacts with the hardware
e glu: library of higher level, built upon OpenGL
* glaux: not used currently

e glut library to build transportable user interfaces (Linux, Windows, Unix,
MacOS)
e glut32.dll - windows\system(32)
e glut32.lib — DevStudio\Vc\lib
e glut.h — DevStudio\Vc\include\gl

Architecture of the OpenGL APIs

1 |———I 1

Ll
| Xlib I | GLX ‘ﬂpunﬂLI | GDW I | WGL ‘ OpenGL I

Programming details

* Add libraries opengl32.lib glu32.lib glut32.lib
* Project : settings : link : Object/Library Modules

* Files to include
 #finclude <GL/gl.h>
 f#finclude <GL/glu.h>

* |f you are using GLUT for managing your window manager
 #tinclude <GL/glut.h>

* Note that glut.h includes gl.h, glu.h, and glx.h automatically, so including all three files is
redundant.

States

* Machine of states
e Background color
* Light intensity
 Material
e Switch on — switch off light
e etc

* Value or state
» glColor*(), glGetFloatv()
» g|lEnable(), glDisable(), gllsEnabled()

Command syntax (functions)

e glVertex3fv(...)
gl tells that this function belongs to the “g
 3isused to indicate three arguments
 fisusedtoindicate that the arguments are floating point
 vindicates that the arguments are in vector format

* Number Of Arguments: 2, 3, or 4

 Bi-dimensional version of the command
« 3Dorrgb
* Homogeneous coordinates or rgb+alpha

I”

s/w package

* Formats
e absence of vindicates scalar format
e vindicates vector format

Variable types and constants

* The most equivalences appear in the table

* |tis recommended to define the arguments that are passed to the

OpenGL functions using their predefined types.

* For Glint some systems may use “short”, others “long”
* For Glfloat some systems may use “float” others “double”

Typical Corresponding |OpenGL
Data type C}-Illzanguage Tyl;e ° T)If)pe Definition
b |8-bit integer C-Language Type GLbyte
s |16-bit integer OpenGL Type GLshort
1 |32-bit integer int or long Glint GLsizei
f |32-bit floating-point float Glfloat GLclampf
d |64-bit floating-point double Gldouble GLclampd
ub |8-bit unsigned integer |unsigned char Glubyte GLboolean
us |16-bit unsigned integer |unsigned short GLushort
:] :] unsigned int or Gluint Glenum
ui [32-bit unsigned integer unsigned long GLbitfield

Constants

e Example : GL_ COLOR BUFFER BIT

* Defined constants
* Begin with GL_
e Use all capital letters
* Use underscores to separate words

* Very frequently operations with “or” are used

.. (gl)

e pure "output”, but lacks connection with display

* 8
* g
* 8
* g
* 8
* 8

Clear (command)
ClearColor (state)
Begin glEnd

Vertex* (geometry)
Color* (attribute, state)
Flush, glFinish (command stack & processing)

... (glut)

* Window system independent management

* “window” management
* glutinitDisplayMode(GLUT_RGB | GLUT_SINGLE);
* glutinitWindowSize(WIDTH, HEIGHT);
 glutlnitWindowPosition (550, 350);
* glutCreateWindow(“Basic Draw");

* “input” : event handling
e similar to: The X Window system, MOTIF, MFF, ...

. (event)
* void Display(void); (callback function)
e glutDisplayFunc(Display); (binding event & callback)

e void Display (void)
* glutMainLoop(); (dispatching events)

Primitives

1, 4 0 d 5
i
. VAL N
2 8 2 S VA T

GL POINTS GL LINES GL LINE STHIP
1 3 3
1 9 n h
i > 3 A
0 2
4 1] i a3 4 3
GL LINE LOOCP GL POLYGON GL QUADS
3 i 4 i}
0
1 ’..-"' 2 f
7
0 3 7
2 ™y 1 -
GL QUAD STHIP GL _THIANGLES
1
a
5 4
0 1@\
h
2 a 0

GL_THIANGLE_STHIP GL_THIANGLE_FAN

* Other available primitives
* Objects (auxiliary purpose, not for build models)
* Vertex arrays
* Display lists
e Evaluators, NURBS, etc

* Text
* There isn’t a primitive
* |tis needed to use textures, with aliasing problem

Attributes

e glPointSize(GLfloat)
e glLineWidth(GLfloat)

» glLineStipple(GLint factor, GLushort pattern)
e glEnable(GL_LINE_STIPPLE)

e glPolygonMode(face, mode)
e GL_FRONT GL BACK GL FRONT _AND BACK
e GL_POINT GL _LINE GL FILL

e glPolygonStipple (enable) “transparency”
* glEdgeFlag* mode Line, splitted concave polygons

e glColor*
PATTERN FACTOR
Ox00FF 1
Ox00FF ?

» glMaterial*

Ox0COF 1 — — — - — —
Ox0C0F J —

D ALAA Il - - = —— = = — =
W FATATIYAY

z
O AALA, 3
O AALA,]

State variables

 Defect values
 Current value

* Management in an application or in a reusable
module

e Defect value in an application
* Policy of state change in a software module

* g|PushAttrib(ored mask) / glPopAttrib()

* |t allows to save a group of attributes

Groups of

attributes

GL_ACCUM_BUFFER_BIT
GL_ALL_ATTRIB_BITS
GL_COLOR_BUFFER_BIT
GL_CURRENT_BIT
GL_DEPTH_BUFFER_BIT
GL_ENABLE_BIT
GL_EVAL_BIT

GL_FOG_BIT

GL_HINT_BIT
GL_LIGHTING_BIT
GL_LINE_BIT

GL_LIST_BIT
GL_PIXEL_MODE_BIT
GL_POINT BIT
GL_POLYGON_BIT
GL_POLYGON_STIPPLE_BIT

GL_SCISSOR_BIT
GL_STENCIL_BUFFER_BIT
GL_TEXTURE_BIT
GL_TRANSFORM_BIT
GL_VIEWPORT BIT

accum-buffer
color-buffer
current
depth-buffer
enable

eval

fog

hint

lighting

line

list

pixel

point
polygon
polygon-stipple

scissor
stencil-buffer
texture
transform

viewport

Grouping

* Arrays
* |t avoids wasting time in calling functions

* Display Lists
* |[dem
* The information can be preprocessed

* |t is stored in the graphic processor to relieve the
communication bus

e Workstations
* PCs

Commands between: giBegin-glEnd

Command Purpose of Command Reference
glVertex*() set vertex coordinates Chapter 2
glColor*() set current color Chapter 5
glindex™() set current color index Chapter 5
gINormal*() set normal vector Chapter 2

coordinates
glEvalCoord*() generate coordinates Chapter 11
glCallList(), glCallLists() execute display list(s) Chapter 4
glTexCoord*() set texture coordinates Chapter 9
glEdgeFlag™*() control drawing of edges Chapter 2

glMaterial*() set material properties Chapter 6

Example : Window to viewport

¢ gl
e g|MatrixMode
* glLoadldentity
* viewport
e g|lOrtho
e g|Getintegerv

e glut
e glutReshapeFunc(myNewsSize)
e void myNewSize(intw, int h)

Interesting links

 www.opengl.org Official site of OpenGL

 nehe.gamedev.net NeHe, various OpenGL tutorials

 romka.demonews.com Romka, various OpenGL tutorials
same as Nehe for DirextX

Transformations

Content

* Coordinate systems
e 2D Transformations
3D Transformations

* Transformation composition

* Rotating about a pivot
* Rotating about an axis

Agradecimientos:
A Alex Garcia-Alonso por facilitar el material para la realization de
estas transparencias (http://www.sc.ehu.es/ccwgamoa/clases)

Coordinate systems

* An object is represented by polygons

* A polygon is a collection of vertex and edges

* To transform an object we must transform their vertex

* From local system to the global system: transformations

2D Transformations

* Translation

e Scale

 Rotation

e Deformation

2 dimensions: translation

A
— + ot
— + ty
X] 0 tX_ X |
_ 0 | ty o
| i 0 0 1_ _1_

2 dimensions: scale

2 dimensions: rotation

\ X = COS O
y =rseno
X" =rcos(o+f)=
p’ =r (cos a. cos B —sen a sin PB) =
y =Xxcos B—ysenf

N\ y =rsen (o +f)=
=r(cosa senf+senacosf)=
o =xsin3+ycosf

2 dimensions: rotation

* Matricially representation with Homogenous coordinates:

A A
i cosP -sinf O

= sin3 cosp 0 o |y
1] 0 0 1] 1

2 dimensions: deformation (shear)

e Deformation of x coordinate:

A A
= T by
I h, 0
yl=1 0 1 0
1 0 0 1 1

3D Transformations

* The general expression of a 3D transformation in Homogenous
coordinates:

—_ N < X
|
o
&
o
)
)
jab)
N)
(O8]
jab)
©)
~
—_ N < X

Transtformation Matrix M,,

e Describe all the transformations: translation, scale, rotation,
deformation.

 The composition of transformations is made by the product of matrix

* You can get the values of the transformation from the matrix:
displacement, scale y turn.

3D: Translation

3D: Scale

3D: Non uniform scale

Sy % S, £ S,

~ —

3D: Rotation

P

M

I

1 0 0
0 cosH -sin0
0O smnmO cosO
0 0 0
cosO O sin6
0 1 0
-sin® 0 cosH
0 0 0
 cos 0 -sin® 0
sin® cos9 O
0 0 1
0 0 0

3D: Rotation matrix

_—o O O _—o O O

_—o O O

X Rotation

Y Rotation

Z Rotation

Shear in xy (z invariant)

— N, <

oo O =

o O ==

Reflexion on plane xy

— N <M

o O O =

o O = O

O = O o

Others transformations

_—o O O

—_— o O O

Composite transformation

* The transformations can be applied sequentially to a point.
* The result of the first transformation:
« M,-P
* The second transformation:
« M,-[M,-P] =[M,-M,]-P

* The composite transformation is made by the product of the matrix
e M=M_-M_,-...-M, - M,

Trar

COom

F
e
i

&
e

/

POSI]

0

HaTella=1 s
rr I

e

F

POSI

ok I
- P
I-{_-" |r ! I-\.-_Irll |r |I l.'.;l i L

sformation product may not be
mutative

L7

Hierarchic structure

* An object is positioned in its coordinate system.

* All the assembly can be positioned in another coordinate system and
so successively.

* The coordinates in the final system are got by the composite
transformation.

Pivot-point rotation

* When the axis doesn't cross the coordinate origin,
the next operations are required:
* Translate the pivot-point Q, to the coordinate origin
* Rotate the object
* Make the inverse translation

* The composite transformation matrix is:
* Mg, (8)=M;- M, - M,
* Mg, (0) =Mq(a, ay, a,) ‘Mg (8) - My (-q,, -q,, -q,)

* The fixed point scaling is done in the same way

Rotation around an axis

io. 7
I

* The axis is defined by a point “Q” and a unit vector “r”. The rotation

has a value defined by angle 6.

* It is solved with a composition of transformations
* Definition of transformations 1y °
e Calculation of each one r/ R
e Explanation of calculation of required angles o Q)

Rotation around an axis :

composition of transformations

Rotation
B around x

Rotation
O around y

£ R M4

—

><V
N\

Traslation

-Q0

M;

———-

Q’ X

Initial
Position

Initial Traslation Rotation
Posiclon QO A o around
‘a R
Z X Z Q
Rotation Rotation
-B around x -oaround z
y
6 R'

/ R
/a

XV

X

Rotation around an axis:
relation of transformations

* The transformation matrix is:
* Mqn(8)=M;-Mg-Ms-M,-M;-M,- M,
M, : traslation QO
M, : rotation o around z
M, : rotation [3 around x
* M, : rotation O around y
M. : rotation -3 around x
Mg : rotation -a around z
M., : traslation -QO

Rotation around an axis :
M, - traslation QO

* We define RsoOR=0Q +r
* The translation that moves Q to the origin is:
* M, =M(-q, -9, -q,)

@

Xy

Rl

\/

Rotation around an axis:
M, - rotation o around z

* Calculation of the a angle between the planes YZ
and the plane defined by the z axis and OR’)
* r,, is the orthogonal projection of r on XY
R” is the result of rotating around z
a is the angle between r, and j (unit vector of y)
The positive direction of k must be taken into account

* M, is the rotation matrix around the z axis:
* MZ = MRZ (OL)

Rotation around an axis:
M, - rotation 3 around X

* Applying M, to R” we get R”
* R” ison the YZ plane
* r""is defined by OR”

e Calculation of the B angle between r”” and |

* The positive direction of i must be taken into account
* M, is the rotation matrix around the x axis:

* Mj = Mg, (B)

Rotation around an axis:
M, - rotation 6 aroundy

277

* Applying M; to R” we get R
* R” isonthey axis
* The rotation 0 is done around the y axis

* M, is the rotation matrix around the y axis:
* M, = Mg, (6)

Rotation around an axis:
Mc, Mg, M - Inverses

e After calculating the O rotation around the transformed axis, it is necessary to
invert the transformation process. To do it, the inverses matrices have to be
calculated.

* Mg = Mg, (-B)
* M¢c=Mg, (-a)
* M;=Mq, q, q,)
* The composed transformation matrix is:
* Mgn(8)=M;-Mg-M;-M,-M;- M, M,

Rotation around an axis:
oL angle

e Calculation of o angle
* r,,is the orthogonal projection of r on the XY
plane: (r,, r,, 0)
ccosa=j-r,/|r,l=
=((0,1,0) - (r,, r,0))/(r2+r2)/
* cosa=r,/(r2+r?2)Y
* As cos a =cos (—a), then

a=acos(r,/(r2+r?2)/?)
ysir,<0 a=-a

\/

Rotation around an axis:
B angle

* Calculation of B angle
« R” and r” are on the YZ plane
e cosPB=j-r’/|r7]| =
=((0,1,0)-(0,r,", r,"))/ (r,/ 2 41,72)12
e cosB=r"/(r, 2+r,2)

e As cos B =cos (—B), then

B=acos(r, /(r,2+r,2)/2)
ySirz”>o :>B='B 7 X

Transformations in OpenGL

Content

* Transformations and coordinate systems

* Example of transformation

e Duality of the transformation

* Functions of matrices

* Transformations of modeling and visualization

e Stack of matrices

Transformations and coordinate systems

Example of transformations

voild reshape(int width, int height) {

glViewport(0, O, width, height);

gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluPerspective(60.0,

(GLTloat)height / (GLfloat)width, 1.0, 128.0);

gIMatrixMode (GL_MODELVIEW) ;

glLoadldentity(

gluLookAt (0.0,
0
0

R O R \V

.0, 3.
.0, O.
.0, O.

o O O

-0
-O’ ’

);

Duality of the transformation

* The next two sentences produce the same result:
gluLookAt(0.0, 1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glTranslatef(0.0, -1.0, -3.0);

* It is equivalent to move the camera in one direction than
to move the object in the opposite direction.

Modes of the matrix

 gIMatrixMode(Glenum mode)
GL_MODELVIEW
GL_PROJECTION
GL _TEXTURE

Functions of matrices

« glLoadldentity(void)
 glLoadMatrix{fd}(cont TYPE *m)
 giMultMatrix{fd}(cont TYPE *m)

ml m5 m9 m13
M _ m2 m6 mlO m14

m3 m7 mll m15

m4 m8 m12 m16

Transformations of modeling and visualization

* Both transformations are combined in the same
matrix: gIMatrixMode(GL_MODELVIEW)

* They move the coordinates of the object to the
coordinates of the camera (eye coordinates)

* Modeling functions:

. glTranslate{fd}(TYPE x, TYPE y, TYPE z)
. glRotate{Ffd}(TYPE angle, TYPE x, TYPE y, TYPE 2)
. glScale{Ffd}(TYPE x, TYPE y, TYPE 2)

e Visualization functions:
 gluLookAt()

Order of tranformations

* translation(1,0,0)
* rotationY(135¢9)

glRotatef(135.0, 0.0, 1.0, 0.0) glTranslatef(1.0, 0.0, 0.0)
glTranslatef (1.0, 0.0, 0.0) glRotatef(135.0, 0.0, 1.0, 0.0)

Order of transformations in OpenGL

gIMatrixMode(GL_MODELVIEW) ;
glLoadldentity();
gIMultMatrixf(M1);
giMultMatrixf(M2);
gIMultMatrixf(M3);

* They apply to the v array:
MleM2eM3ey = [M1e[M2e[M3ev]]]

Note: actually, they are applied: [M1eM2eM3]ev

Reference system

* In a global system, the transformations have to be defined from the
ast to the first.

* In a local system, the transformations have to be defined in the order
that they are applied.

 Particular case: turtle of logo

Stack of matrices

 glPushMatrix(void)
 glPopMatrix(void)

Push Translate

Camera

Content

* Coordinate systems and transformations
* Viewing coordinates

* Coordinate transformation matrix

* Projections

* Window and viewport

Acknowledgments:
To Alex Garcia-Alonso who provided material for these slides
(http://www.sc.ehu.es/ccwgamoa/clases)

Projection

* We want to project the 3D space into a plane

* Definition of camera and projection with
geometric transformations of the coordinate
systems

Coordinate systems and
transformations

* Modeling coordinates (local)
Modeling transformation

* World coordinates (world)
Viewing transformation

* \Viewing coordinates (view)
Projection transformation

* Device coordinates (screen)

World coordinates

* It unifies the coordinate systems of all the objects
of the scene

* Animation is achieved with transformations along
time

* Lights and cameras are defined in world
coordinates

* The properties of the camera define the viewing
coordinates

Viewing coordinates

 Camera, eye, view coordinates
* They are the coordinates in the camera system

* They are defined by position and orientation of the
camera

* They can include the view volume

Definition of viewing reference

ﬁ

Irame

* It is defined with the parameters of the camera:
* View point
* Direction of viewing
* View-up vector V

* They define the three dimensional viewing-
coordinate frame

Elements of the viewing
coordinate frame

* Point C and UVN vectors

 Cisthe view point

* N is the direction of
viewing

* Visthe view-up vector (Y
axis on the plane)

e UisnormaltoNandV (X
axis on plane)

Rotation transformation

e The transfomation matrix is formed with the unit
vectors UVN in world coordinates as rows

nzmz(nl,nz,m)
V xN
u= ‘VXN‘ _(u19u29u3)

v=nxu=(V,V,,V,)

Hearn & Baker, 12-2

Transformation matrix to viewing
coordinates

* Composition of translation and rotation
eT . ..=ReT

view

* It is a left-handed system (X axis to the left)

1 0 0 -C U, u, u,

0 10 -C Ve vy Y,

T = 0 0 1 -C R = n, n, n,
00 0 1 | 0 0 0

_ o O O

Types of projections

 Parallel projection
e orthogonal

» obligue (projection not perpendicular to the view
plane)

* Perspective projection

Parallel projection

* Orthogonal projection in view coordinates: the z
coordinate is eliminated

=
|
oo O =
o o = O
o O O O
—_ o O O

Perspective projection

Man Drawing a Lute, Woodcut, 1525, Albrecht Durer.

http://www.usc.edu/schools/annenberg/asc/projects/comm544/library/images/626.jpg

Features of perspective
projection
* More real: it is the projection that happens in the

eye and in a camera

* Parallel lines in the scene converge in a vanishing
point

* The quantity of vanishing points is defined by the
qguantity of parallel lines that intersect with the
projection plane

Transtformations of the
perspective projection

With a matrix expression:

X

g N <

s Y

1

0
0
0

0

1
0
0

0

0

1
1/d

0
0
0
1

-

N
7

=IN =< ¢

| <

o

Other issues

* Visualization volume
* Sides of the pyramid

. qu-altgilfa%eyvaﬁdg‘auzﬂplane

(near and far)

* Hide haadk sides, = f

* Np: normal of the polygon, N: vector of visuali2ag

N, oN >0

Camera movements

* Of the camera position
e Around the camera axis
e Around the scene axis

e Of the point of attention
e Simultaneous of both

* Object in hand

* Walking and flying

Airplane analogy

* Rotation around X: Pitch (cabeceo)
e Rotation around Y: Yaw (giro)

* Rotation around Z: Roll (balanceo)

Yaw

¥ ¥ 0 Ty
%—ﬁ T ()

+ Roll -

http://liftoff.msfc.nasa.gov/academy/rocket sci/shuttle/attitude/pyr.html

Cosmoplayer controls

(G
Tilt Slicle

Movement controls

COSMOY

Examine controls

COSMO

oo Fotate Fan

Windows of presentation

* Object Window

* The projection of the camera create 2 dimension
coordinates

* The device coordinates are independent of the
scene coordinates

* It is necessary to transfer from window
coordinates to the device coordinates

Window and viewport

yVmin T

yVmax_/ I

Window rectangle k

Image with distortion

-

o

Screen image

~

/

Transformation to viewport

* To calculate the coordinates in viewport (xv, yv) of

a point in window coordinates (xw, yw) (previously (x,,
Ys))

* The existing relations are:

VR |) XV — XV . XW — XW_
gw b T W] FGTY) mn_
md..)f I(XW§ yW) i YV 1 i E XVmax o XVmin XWmax o XWmin
. i min| "_2""
ywmnn _____ _______ K j yV B yVmin _ yW B mein
- ! : ! — ; —
XKW XW XVimin XVmax yVmaX o yvmin vaax o mein

Issues about transformations

e Distortion, it is caused by the different rate of
window and viewport
 allow
e Avoid through change in window or viewport

* Clipping
e Cutting the segments and polygons that intersect the
window

Lighting

Content

* Factors

* Reflection
 Ambient Light
* Diffuse Light

e Specular Light

e |[lumination model

B
-
-
e
-
-
-
-
-t
e
zZ2
$=3
=
=z
=
i
#:E
1
E

1

Acknowledgments:

To Alex Garcia-Alonso for the material for this slides
(http://www.sc.ehu.es/ccwgamoa/clases)

Factors of illumination

* We perceive images made by light

* The light we see on a point depends on:
* the light that arrives from the light source
* the orientation of the point
* the features of the material

* the light that arrives from
other points

* the position of the observer

Reflection of the light

* The light can be reflected:
e perfect specular reflection

* imperfect specular reflection
e diffuse

1

1
Ny ! Ny
~ - 1 ~ -
O | O
- ~ 1 - ~
AR 1 IR

N2 N

Illumination model

* The reflected light of a surface is defined by:
Ambient light + Diffuse reflection + Specular reflection
=k, I, +kylq+ Kk,

Ambient light

* <a|a

* |, is the ambient light of the scene

* k, is a property of the material
* It is a simplification of the global illumination model

* It substitutes the lights that doesn’t arrive directly from the source
ights

Ambient light - image

Diffuse reflection

Lambert’s cosin Law “O- |

kglg = kyl, cos O =
= kyl, (nel)

,is the light from a point source light
KIS a property of the material

t is independent of the observer

t is the main component of the object’s color

Diffuse reflection - image

Specular reflection

* The perfect specular reflection only produces reflection on a point
* The imperfect specular reflection is used in CG

* The intensity decreases when we move away from the reflected ray
direction

* Fresnel Law: cos® o

* It produces the shine of
the objects

http://www.forestal.uchile.cl/centro/frutillar/fotozona/2puesta%20sol%20clara.jpg

Specular reflection - calculation

e kl.= k.| cossa =
sls = Ks o S O o
= kI, (rev) N
* |,is the light of a point light

source

* k. is a property of the
material

e s defines the diffusion, it is
the specular parameter

Reflected vector

e Calculation of the reflected vector r

r=r,+r,
-ry=1+(-ry)=>r,=-1+r,
Replace in [1]:
r=-l+r,+r,=2r,-|
r,=(nel)n

Replacein[4]:r=2(nel)n-1|

[1]
[2]

3.
4
E)

Specular reflection - Image

llumination Model

* The light reflected by a surface:

Ambient light + Diffuse reflection + Specular reflection
=kl + kgl (nel)+kl, (rev)s

Render

 Gouraud render
* Phong render

e Global illumination Model
* ray tracing
* radiosity

Color

Contents

* Light and color
* The visible light spectrum
* Primary and secondary colors

* Color spaces
 RGB, CMY, YIQ, HLS, CIE
* CIE XYZ, CIE xyY and CIE diagram properties

* Visible electromagnetic radiation

* The type of electromagnetic wave that is visible to the human eye.

* Electromagnetic radiation that has a wavelength in the range from
about 4,000 (violet) to about 7,700 (red) angstroms and may be
perceived by the normal unaided human eye.

http://www.answers.com/color

Electromagnetic radiation

* Electromagnetic radiation is a kind of energy radiated in the form of a
wave

* The frequency define the energy
*E=hv
e Andthe hue: A=c/v

40d Wavelength (nm) e

Electromagnetic spectrum and the visible
light spectrum

Increasing Energy

HUAVAVAVAV AV

Increasing Wavelength

-11 -8 -6 -3
10 m 10m 10 m 10 m

Jamma Kays X-tays | Ulra— Infrared Fadio Waves
Winlet

T

VWisible Light
A00nm (Wiolet]) — 750nm (Red)

What is color?

e [t Is a sensation

e “Color is actually light waves that hit our eyes, translated into nerve
impulses, and interpreted by our brains as all the various colors

around us.”
* Three components: RGB

* Cones
e Reds (low frequency)

* Greens (medium frequency)

e Blues (high frequency)

Vitreous

Choroid

Optic nerve

% Macula
Lens <

i
Ennjunctiva/

http://www.stlukeseye.com/images/illustrations/anatomy_globe.jpg

Retina

Cono

| colo r|

s‘ﬂ-

¥ | - Nervio
Lente ¢ s optico

- & .::::::k:%q -
Cornea - " Retina

" Esclerotica

http://www.uic.edu/com/eye/department/support/images/AdrienneVersion.jpg

Mixing colors

Primary and secondary colors

. Additive Colors

Subtractive Colors

RGB (Display Screen)

From Computer Dezktop Encyclopedia
= 2004 The Computer Language Co. Inc.

CMYK [Printer)

Magert @

BLUE

Color spaces

» Systems to define colors numerically

* Device oriented
 RGB
e CMY

* YIQ

e Human oriented
e HSV
* CIE

RGB

* Additive model

* Intensity of the three
components

(0, 0, 1) Blue (0,1, 1) Cyan

(1,0, 1) / O/(l, 1,1)

Magenta White

(0, 0, 0)

Black /,’ _________________ (0, 1, 0) Green
d ¢

(1,0, 0) Red (1, 1, 0) Yellow

RGB

 Features

* |t is used by hardware devices
* True color: 2563 =16.777.216

* |tis a standard on computing
* bgcolor="#FFFFFF”

* Problems
 Their variations are not lineal
e |tisn’t intuitive

CMY

e Subtractive model

(0, 0, 1) Yellow (0,1, 1) Red
(1,0, 1) ./O /(1, 1,1)
Green Black
(0,0, 0)

White ,,/O _________________ (0, 1, 0) Magenta

(1 0 O) Cyan (1; 1, O) Blue

CMY

* Complementary of RGB
[CMY] =1[1,1,1] - [RGB]

* Used in printing

* Use of CMYK
* Black (K) is added

HSV

* Projection of RGB diagram
about the biggest diagonal

* Polar coordinates
* Hue
* Saturation
e Value or brightness

* Transformation to RGB (no
lineal)

CHMYE Picker

rrrrrrrrrrrr

HLE Picker

HEY Picker

Quil v

HLS ‘

m 1.0 White

* Two cones joined, 20/Green’, 60 Yellow
. h h . h 180 ‘\‘ ,l' v\ ” 0 Red
with white on the Cyan =

S
upper vertex

e Variation of HSV
* L: lightness

2 ue !/ 300 Magenta

0.0 Black

lightness /M

Color
Basic colors:
o Yl
e e | o :
ErfrrFEETEN ' .
HT N EN N 1
ERNEEEEEE .
HENEENT .
LCustom colors: h ue
[
Hue 125 Fed[zs

o T e

Wefine Eustam Eolarss:> | Calarlzalid Lur: W Blue: Iﬁ

kK I Cancel | Add to Custorn Colors |

YIQ

* Lineal transformation of RGB
e Used by the NTSC (National Television Standards Committee)
* Y is brightness (used in black-and-white television monitors)

Y| [0299 0587 0.144 |[R
| [=/10.596 —-0.275 —-0321||G
Q| [0212 -0.523 0311 ||B]|

CIE Diagram

| L 1 L Ll | E i T || i II | | '

| 1931 C.LE. Diagram with source "A”

| tungsten filament operating at 2854°K —
, Lumitron Corporation, Summit, NJU.S.A. r

http://www.lumitroncorp.com/rsrcs/CIE.gif

ClE

* 1931: measurement of color by the CIE (Commission International de
L'Eclairage)

* Based on Tristimulus Vision Theory
* Represents any color detected by the human being

Definition of CIE diagram

/]

04T

* Experimentally
e Red (700 nm) :
* Green (546,1 nm)

? 024

e Blue (435,8 nm) 1T

, 0.3

b(A) T(A)

9 (A)

* There is negative values (added th
primary to the sample)

N

T I
500 600 700

wavelength

V4
o They Can t be USEd http://www.imel1.kuis.kyoto-u.ac.jp/education/dip-arch/pre/images/graph10.gif

* |t is made adding the primary to the
sample

The three standard primaries of CIE

1.8

* They are not real colors I
 The functions are defined in 1.4 i
tabular form (at 1 nm interval) '? —_
1.0 "
* They are standards to define ™™ YRR
colors 16 VAARYE
0.4 F{A) / \\
o2l \
0

350 400 450 500 550 600 650 700
waveferglfe (nm)

http://www.imel1.kuis.kyoto-u.ac.jp/education/dip-arch/pre/images/xyz.gif

CIE XYZ

* One color is defined by the X, Y, Z T
components.

* The projection on the XY plane
produces the CIE Chromatic
Diagram.

CIE xyY

* Normalizing the values:
X+y+z=1
* Y is the luminance

information

e function y(A) was chosen in
this way

T T | T T T |
00 01 02 03 04 05 06 07 0B
X

http://hypertextbook.com/physics/waves/color/chromaticity.jpg

Properties of CIE diagram

* Gamut of different devices
Visable Light Spectrum

Monitor Gamut
B Film Gamut
: B Print Gamut

* The periphery is the spectrum colors

* The purple line are non-spectral colors

* The spectral component of a color is
calculated with the line to the center

Color gamuts of color monitor,
film and print shown transposed
on the 1931 CIE x"y"z" color space.

http://www.tu-harburg.de/rzt/tuinfo/periph/drucker/Color_Reproduktion/cie_spectrum.gif

Color spaces

http://www.gg.caltech.edu/~dhl/images.html

ube RGB

/N
g !

Render methods

Contents

* Levels of rendering

* Wireframe

* Plain shadow

* Gouraud

* Phong

* Comparison Gouraud-Phong

Levels of rendering

* Wireframe

* Plain shadow
* Gouraud

* Phong

* Textures

* Global lllumination Models
* Ray tracing
e Radiosity

Wireframe - image

Plain shadow

* Constant color for each polygon

* It applies the local illumination model to a point of the polygon
(center)

e The normal vector is a date of the model or it can be calculated as the
dot product of two edges

* The direction (clockwise or counterclockwise) of the edges must be taken into
account. And also the non-convex polygons.

Plain shadow - image

Gouraud

* It is based on the fact that
the polygons make
the approximation

of a curved surface T/ | Real surface

* It calculates the intensity in the vertex
* The intensities are interpolated between the vertex

* Each polygon is rendered

Gouraud — calculation of
the normal vector

* The normal vector can be obtained:
* From the original model
* Calculated from the polygonal model

* From the polygonal model

* The normal vectors of each polygon that shares the vertex are calculated:
* Dot product of the edges

* The average of the normal vectors is calculated

Gouraud - interpolation

* Interpolation of the intensities
calculated in the vertex

e The intensities are calculated in the
global system

* The interpolation is done in the view
system

* Interpolation between edges

* Interpolation in the scan line

Gouraud - formulas

L=k, T keI, (ne]) + kI (rev)s

| | y T y2 | yl o yO
i =1 2y
Y17 Y, Y1=Y,

y o y3 N yl o yO
f 1 3 v —
Y=Yy Yy

Gouraud - problems

* It doesn’t render the specular light
* |n the interpolation process, the maximums are in the vertex

* In the real model the specular light only affects a small area, so it is difficult
that it appears in the interpolation

Gouraud - problems (2)

* |t is possible that the local model is not coherent
* |t can emit more light than it receives

* In view coordinates, the “x” and “y” lengths are not linear in relation

“_J

to "z

* Polygonal shapes
* |t can be solved with more detailed meshes.
* |t can be solved using parametric surfaces

Phong

* It interpolates the normal vectors instead of the intensities
* It represents a polygonal model with a normal vector in each point

* It solves the specular light problem

/ Real surface

/ Interpolated normal
T~ vectors

Phong - problems

* In terms of computation, it is more expensive
* |t interpolates vectors instead of scalar values
* |t calculates the intensity in each point

* The other problems remain

Gouraud-Phong comparison

* Gouraud is less expensive but it doesn’t render correctly the specular
light (it is different in function of the orientation)

* Phong solves the problem with more calculations

* A Gouraud shading can be used for objects with diffuse reflection and
a Phong shading for objects with specular reflection

Rendering

Contents

* Objective

* Rendering of lines
* DDA algorithm
* Bresenham algorithm

* Polygons rendering
* Polygons filling
* Visible surface detection

Rendering

* There is information about:
* Topology of the scene
e Coordinates of the projected vertexes
* Intensity in the vertex or in each point
e Z coordinate in the vertex

* The objective is to calculate:
* Color in each pixel

Rendering of lines

* Input data: the coordinates of the two vertex

* It must be calculated the pixels that must be set

* |t produces an incorrect solution to set all the pixels where the line goes
through.

O -DNWbH
O =-DNWH

AT T

012 3 456 012 3 456

Incorrect solution Correct solution

DDA algorith (Digital Diferential Analyzer)

dx = xb - xa xIncrement = dx / steps
dy = yb - ya ylncrement = dy / steps
X = xa call Plot(x, y)
a ot(X,
y = Yya 4
If (Abs(dx) > Abs(dy)) Then For k = 0 To steps - 1
steps = Abs(dx) X = X + xIncrement
Else y =y + ylncrement
steps = Abs(dy) Call Plot(x, VYy)

Bresenham algorithm

e DDA works with real numbers

* Bresenham algorithm was developed for
digital plotters .

* |t is based on: /2
* Incrementing the biggest dimension
e The other coordinate increments O or 1

e The error is controlled with the difference
between the line and the start of the nearest
pixel

Bresenham algorithm

* The error increments with the value of the slope: e
= e + dy/dx

* When error > 1/2:

* [tincrementsy

e |t subtracts 1 from error 0.6
* The process starts o
Wlth e = -1/2 0,2 /\
. - O / N/
Th.e control is made ¢ -~ 7 . \V
withe >0 02 \/

Bresenham algorithm

* Operations with e:

* initialization: e = dy/dx - 1/2

* increments: e = e + dy/dx

e Control: if (e>0)thene=e-1,x=x+1
* X and y are integer

* e js real

* To work with integers,
we multiply error by 2 e dx

Bresenham algorithm

dx = Abs(xa - xb)
dy = Abs(ya - yb)

e =2 * dy - dx

IT (xa > xb) Then

X = Xb

y = yb

XEnd = xa
Else

X = Xa

y = Yya

XEnd = xb
End IFf

Call Plot(x, y)

Do While (X < XEnd)

X =X +1
IT (e > 0) Then
y=y+1

e =e -2 * dx
End If
e = e + 2 * dy
Call Plot(x, vy)
Loop

Polygons rendering

* It is processed line by line (scan line)

* It is filled inside the start and end of each edge

O =~ N W b 01 O N 00 ©O O

i

/

—

O 1 2 3 4 5 6 7 8 910

O -~ NN W b

0O 1 2 3 4 5 6

For the polygon, only the red pixels are
need

Rendering of edges of polygons

* There is need a pixel by horizontal line (scan line)

 The algorithms are modifications of the DDA or Bresenham
algorithms, example with modification of DDA:

dx = xb - xa

dy yb - ya

4
3
X = Xa 2
increment = dx / dy 1
0

For y = ya To yb 0 1 2 3 4 5 6

Call Plot(x, Yy)
X = X + Increment
Next y

Filling between edges

* In each line (scan line) there is an even number of edges.

* In convex polygons there are always 2 edges.

* In the filling process, the shading and z coordinate is calculated.

* The rendering can be done in two ways:
e scan line (one line at a time)

* polygon by polygon

Scan line

 The image is calculated line by line, starting usually by the top line.

* In each line:

* The process calculates the list of edges in that line (it is done adding new
edges and eliminating the edges that have ended)

* |n each pixel:

e Calculate the values of the polygon in this pixel, interpolating from the values in the
edges (incrementally)

* Render the values of the pixel nearest to the point of view

Polygon by polygon

* The image is generated polygon by polygon.

* In each polygon:

* For each horizontal line betweeny, ., andy,_. of the polygon:
* Get the list of edges in the line.

* Render the pixels between this edges if this is the nearest polygon to the point of view
(the z value is stored)

Elimination of hidden surfaces

* Historically, there has been different methods to solve this problem.

* One of the most known methods it the painter’s algorithm: paint the
polygons from furthest to closest.

e Currently, the Z-buffer is used
* |t is the method can be used in the rendering polygon by polygon
* |tis implemented in the hardware of graphic cards.

/ buffer

* It uses a matrix with the values of the z coordinate for each pixel
* It allows rendering the polygons one on one.

* When rendering a polygon, the value of the z coordinate is compared
with the z value stored for that pixel, if it is closest, it is rendered and
their z value stored in the matrix.

Scenes creation

e Storyboard

* Models of the objects
* Position

* |nitial rendering

* Modifications

* Rendering final

Modeling of objects

+ Watt chap. 2, Hearn 10.1 - 10.4, 10.14-10.16

Contents

* Objects building
* Rendering of objects

* Polygonal representation
e structure, creation, mesh, attributes, ...

e Others methods (splines, CGS, volumetric).

Goals

* Rendering of a real object or existing as a model in the computer.
* To render the image or to study other actions (CAM, analysis)

iy ,ﬁr ,;rff —

_rj;gﬂ.fﬂ.’.'m

Functions

* The modelization includes:
e Data structure to render the object
* Creation of the object in the computer
* Edition of the object

Creation of objects

* With a CAD interface (3DStudio,
ProEngineer,...)

* From real objects (laser explorer, 3D
digitizer)
* Matematically

http://graphics.stanford.edu/papers/rt_model/rt_model.pd

Visualization Toolkit

Object representation

* There isn’t a uniqgue method

* It depends on the object, purpose and media:
e User interface
 Computer representation
¢ storage

* The most popular: polygona
(computer representation)

Modeling Methods

* Polygonal representation

* Splines

* CSG (Constructive Solid Geometry)

e Space partitioning (octrees y BSP: binary space partitioning)
* Implicit representation

Polygonal representation

f
4

e

)
=
IS
o
S
o
<
| -
©
X
a
|
0
o\
o)
ol
..H-l-

1430 - Florencia

2001 - Final Fantasy

Polygonal - Features

* It can render any object
* It is the method used by the graphic hardware (graphic cards)
* |t is difficult to edit after creation.

* |t requires a lot of information

* It is used together textures

Polygonal - Features

* It is necessary to differentiate surfaces and polygons
 Example: a closed cylinder: 3 surfaces, n polygons

* In curved surfaces, it is an approximation

* The number of polygons depends of the curvature
e Usually triangles are used.
* Equation of the plane: Ax+By+Cz+ D=0

Polygonal — Data structure

Polygon List

1
iy

e e

Bl — v v vl — x1y1.z1}
-—> V2 V3 z > (2222
-—> v v4 E—b {x3,y3,23}
BBl vt v | || va] (xdyaaa)
-—b vy vl V5 —> {x5,y5,25}
-_, vl | v4 Vertex List
-—> v2 v4

Edge List

Polygonal - Meshes

* The vertexes are shared by several polygons

* Optimization using meshes
e strips (triangle - strips)
 fans (triangle - fans)

Poligonal - Atributos

* Atributos de poligonos

triangular o no

area

normal

ecuation del plano
convexo 0 no

con agujeros o sin ellos

e Atributos de las aristas
* longitud
e arista de superficie o

poligono
e Atributos de los
vertices

* |lista de poligonos
 valor del sombreado
* normal
e coordenadas de textura

Poligonal - Generation

* Modelado
* Exploration de objects reales

e Generation matematica
* Funciones
e Extrusion vy perfiles

* A partir de otros modelos de represe
(CS G) S p I i n e S’ Voxe I S) http://www.sun.com/960710/feature3/alice.html

Poligonales - Exploration

http://graphics.stanford.edu/projects/mich/mich.html

Poligonal - Resolution

48 poligonos 120 poligonos 300 poligonos 1000 poligonos

- l%_'_h?_} -

Poligonal - Fractales

* Misma forma en infinitas resoluciones
* Basada en subdivision de poligonos

Splines

* Spline: banda flexible que produce una curva suave a través de un
conjunto de puntos

* Curva con secciones
polindmicas

* Disenar curvas y super-
ficies

Constructive Solid Geometry

* Primitivas, transformaciones y operaciones booleanas
* Primitivas: cubo, esfera, piramide, cono, ...

* Operaciones booleanas
* Unidn
e Substraction
* Intersection

CSG - Ejemplo

Subdivision del espacio

* Son métodos volumeétricos
* Voxels: bitmaps en 3 dimensiones
* Octrees: division en 8 cubos
e BSP: division binaria del
espacio

-..‘J

S

* Restringido a ciertos objects
* ejemplo: primitivas de CSG

e Cuadricas (esfera, elipsoide, toro, ...)

e Supercuadricas (incorporan parametros adicionales)

lrlll"?"l 'ﬂ y % ; S ; T : ! ¥
WY /ﬁh m STy
v mg g}w -~»

Gestion de |la escena

e Se representan escenas, no solo objects
e Estructuras jerarquicas
* Aplicaciones de tiempo real

* objects representados por hardware y el software indica qué objects
* Nivel de detalle de los objects

Otras clasificaciones

* Representation de bordes (Boundary Rerepresentation: B-reps)

* Define un object por las superficies que separan el interior del object del
entorno

 Partition del espacio
* Conjunto de solidos continuos no solapados

Texturas

Contenido

* Concepto de textura
e Utilizacion
 Mapeado de color

* Mapeado del entrono
* Bump mapping

Introduccion

* Mapeado de texturas: mapear una imagen bidimensional en un
objeto

* El sombreado de Phong produce objetos de apariencia plastica

* Los métodos para dotarle de realismo son:
 texturas (anadido a los algoritmos tradicionales)
* iluminacion global (nuevos algoritmos)

Utilizacion de texturas

* Mapeado de color

* Mapeado del entorno
* Bump mapping

* Transparencias

Fundamentos

* Proceso:
e Se asocia la textura a la superficie del objeto
e Se proyecta el objeto en la ventana

e Es una transformacion de 2D a 2D

* Se realiza en dos fases
* parametrizacion
* proyeccion

Parametrizacion

* En objetos poligonales se asocian a los vértices las coordenadas de
textura (u, v)

* La imagen de la textura tiene unas coordenadas u, v

P.(x, Y,z u,V)

Mapeado inverso

* En el proceso de rendering se recorre cada pixel de la ventana de
salida

e Se calcula el valordeuyv
* matriz de transformacion
* mas habitual, interpolacién bilinear

* Necesidad de anti-aliasing, debido a que un pixel de la ventana de
salidad puede corresponder a un varios pixels de la textura

exturas- Imagen

Bump mapping

* Desarrollada en 1978 por Blinn
* Muestra deformaciones sin necesidad de modelarlas

e Deforma las normales
de la superficie

* Se aprecia en el
contorno del objeto

— sigue siendo el original

iNng - imagen

Bump mapp

-
i -

g |
|
¥

#
g

X

3

Mapeado del entorno

* Environment mapping, reflection mapping, chrome mapping
* Consiste en reflejar el entorno del objeto
* La textura se mueve con el objeto

http://www.debevec.org/ReflectionMapping/

Ejemplos de mapeado del entorno

1 L] "'-.*;H‘_'

Flight of the Navigator - 1986 =

s =0 T

Star Wars Episode I: The Phantom Menace

http://www.angelfire.com/scifi/spacecraft/fnspacecraft/nabooroyal.htm

Mapeado del entorno - imagen

Global Hlumination Models

THE WHITTED IMAGE - BASIC RECURSIVE RAY TRACING Copyright © 1997 A. Watt and L. Cooper

Content

* Reality and perception
* Local and global illumination
* The rendering equation

* Algorithms
* Ray tracing
e Radiosity

* Applications
 POV-Ray, Radiance

Reality and perception

* We know the reality because it sends us messages about how it is
* Communication

transmitter ﬁ receiver

The message is the information of the own transmitter

Knowledge of the reality

* We know the reality with sensors (receptors)
* Sight, hearing, sense of touch, taste, smell

* With the sight sense, we interpret 4 features of the objects:
* Form
* Position
* |[lumination (Bright and color)
* Movement

Visual Path

* The light arrives to the eye from the
object
* |tis projected in the retina

* The receptors
* The receptors detect color and light v _:-_--_;:.-_-"I' -_

* They interpret
* |llumination (color and contrast)
* The contrast define the shapes

* The situation of the receptors and the :
. . L o - = ey --_"--._k
comparison of both eyes define the position mrtnl| misms] 5 i)

* The sequence of images gives information of [Color]
the movement i

I A=F N
ALdLth | Dotection

Vizual Impression

Perception

 Mental model of the real world
* It is built from the stimulus of the senses and interpreted by our brain

* The principal feature is the recognition of patterns

Global lllumination

* It considers the reflected light by a point taking into account all the
light that arrives

* Not only the incident from the source lights

* Effects
* shadows
 reflection of an object in others
* transparencies

Reality and illumination

* The illumination depends on the transmitter and receiver

Models of global illumination

* Ray tracing

e Specular interactions
* Radiosity

e Diffuse interactions

* Most of the algorithms use both

The rendering equation

* Equation introduced by Kajiya (1986)
I(x, X') = g(x, x)e(x, x")+l; p(x, X', X7} 1{x", x"")dx""]

* |(x, x"): total amount of light from x" to x

* g(x, x'): function of visibility, O or proportional to the
inverse of the square of the distance

* g(x, X): emitted light from x” to x

* p(x, X, X”'): bidirectional reflectance distribution
function, light reflected from x*” to x in x’

The rendering equation (2)

* We need the functions:
* Visibility
* Emission
* Bidirectional reflectance distribution

* The integral is not analytic
* It is independent of the point of view
* It is for all the points, not only the incident rays on the eye

* [t Is recursive

Global illumination algorithms

* Basic solution:
* From a light source, we emit all the possible light rays and follow their path
until they arrive to the point of view or go out of the scene
* Approximations:

* Use only specular and diffuse interactions
* Take into account only a subset of the light rays emitted by the source lights

Ray tracing

* It only takes into account the rays that arrive to the point of view

* |t uses inverse ray tracing
* from the eye to the light source

* The algorithm depends on the point of view
* It’s a global model with a local calculation for each point

Ray tracing - process

* It calculates the intersection with objects
* Visibility of the lights
* |t calculates the reflected ray and the refracted ray (or transmitted) for each
ray
* It follows until:
* The ray has low energy
* The ray goes out of the scene
* The ray strikes into a diffuse object

Ray tracing - sketch

* Ray tracing .
from the point Ry
of view : N, -
S: Shadow (to L, —-e——————i'x._:--— d --.-_;\.--" 5,
light sources) v e Y - 9
R: Reflected Tl pd . O :
T: Transmitted RN ﬁ
-._--.-. 3__:-Jl._--l-' .-.-_
-.__- .-'..:E
3 ﬁ'{L)
'-. § ."._ _.-'-.
.-.'-_:‘:H __.-"-
" EO

Ray tracing - limitations

* It only considers the specular reflection and the refraction

* The diffuse reflection is considered only in the ray that arrives from
the light source

* It would be very expensive to consider the complete diffuse reflection
* Most of the scenes have surfaces with diffuse reflection

POV-Ray

* Persistence of Vision Raytraces (POV-Ray) is the most known ray
tracing application

[]
° |[tis free:
L f) PO¥-Ray - C:\Program Files\POY-Ray for Windowsz v3_5\scenes\advancediwoodhox_pov

File Edit Search Tewst Editor Inzet Bender Optione Toaols GUI-Estension: Help

WWW.povray.org AR BEERBVD O DU

Mew Open Save Cloge GQueus Remun Hide Ini SelRun Run Fzuse Trap £
| |J| H P PO0VMWin D Scene @ Accessoies PPOVSte SFIRTCSte
o E 1 t f Messagesl Changes.ml F’ievisinn.bctl F’ieadme.bdl hiscuitpoy woodbox poy | demu.pnvl wtc:rus.pc:vl demu.pu:uvl
a Sy I n e r a Ce A4 woodbox, pony =
S8 POW-Ray 2.5 scene file by Dan Farmer -

A4 Copyright POW-Team, 139%

4 Demonstrates some of the woods.inc textures.

S several wooden spheres (and one glass oneld, in and around
S a wooden box.

* |t has a visual O roviay -

#nclude "textures.inc"
#include "shapes.inc"
#include "metals.inc"

°
#include "glass.inc"
a a e I O r #include "woods.inc”
global_settings {max_trace_lewel &}

camera |
location <-%5, 10, -1G5=
directien <0, O, =2.2%>
right =*1.33
look_at <0,0,02

#declare Dist=80.0;

Tight_source {= -50, 25, -G50= color White
Tade_distance Dist fade_power =

s area_light <-40, 0O, -40=, <40, 0O, 40>, |

ri adaptiwve 1

s jitter

Tight_source {< 50, 10, -4>» color arayio
Tade_distance Dist Tade_power 2

s area_light <-z0, 0O, -20=, <20, 0O, 20>, 3, 2

ri adaptiwve 1

,:’,n‘ jitter -
[« | 4

|Dutput > 'C:\Program Files\POV-Ray for Windows v35hscer| Li44 | G103 | Ins | | B400PPS |0d OOh OOm 125 4

Images of PovRay

http://www.xlcus.co.uk/povray/sunset/sunset-0320x0240.jpg

http/w.3d|uv.com/intercepto/povray/gaIIery/train.jpg

http://www.xlcus.com/povray/tulips/tulips-0240x0320.jpg http://www.geocities.com/~mloh/povray/2cups.jpg

Radiosity

* It implements the interaction between diffuse surfaces

* It creates a solution independent of the point of view
* The solution is calculated for all the points of the scene

* It calculates the radiation for each polygon

* It is necessary to discretize (divide in smaller polygons) the scene
* The discretization process depends on the previous step of the solution

Radiosity - process

* The light sources are considered emitter polygons

|t is calculated the diffuse-diffuse interaction with each visible
polygon for the light

* A portion of the light is absorbed and another portion is emitted

* The process follows with the polygon that has the most energy to
emit

* The process continues until a defined percentage of the energy has
been absorbed

Radiosity — form factor

* The transfer between two polygons is calculated by geometry
relations

* The form factors make an average of the radiation transmitted
between two polygons

* |t takes into account the visibility between each other

Radiosity — example of process

Radiosity - images

http://www.siggraph.org/education/materials/HyperGraph/radiosity/overview_3.htm

Escenario

Radiosity - limitations

* It doesn’t considerer the specular reflection
* The scenes usually have both reflections

* It is necessary to discretize the scene with polygons before the
calculation

Radiance

* It is the “renderer” most known of global illumination (Gregory J.
Ward -1994)

* The goal is to represent illumination with the maximum accuracy in
architecture images
* Solar light
 Artificial light

* It makes separated calculations for specular reflection and diffuse
reflection

Radiance - images

Scott Routen & Reuben McFarland / Indiana Universit

=

Figure 19. Indiana University ||:|-I'Er'[||' spac, Figure 16. Design of the ME‘"E'"':H""P Pﬂfi“iﬂ"s
illuminated by a central skylight. currently under construction at Indiana

University.

http://www.siggraph.org/education/materials/HyperGraph/raytrace/radiance/abstract.html

